Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biochem Pharmacol ; : 116209, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38621424

RESUMEN

The worst-case scenario related to alcoholic liver disease (ALD) arises after a long period of exposure to the harmful effect of alcohol consumption along with other hepatotoxics. ALD encompasses a broad spectrum of liver-associated disorders, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Based on the chronic administration of different hepatotoxics, including ethanol, sucrose, lipopolysaccharide, and low doses of diethylnitrosamine over a short period, here we aimed to develop a multiple hepatotoxic (MHT)-ALD model in the mouse that recapitulates the human ALD-associated disorders. We demonstrated that the MHT-ALD model induces ADH1A and NXN, an ethanol metabolizer and a redox-sensor enzyme, respectively; promotes steatosis associated with the induction of the lipid droplet forming FSP27, inflammation identified by the infiltration of hepatic neutrophils-positive to LY-6G marker, and the increase of MYD88 level, a protein involved in inflammatory response; and stimulates the early appearance of cellular senescence identified by the senescence markers SA-ß-gal activity and p-H2A.XSer139. It also induces fibrosis associated with increased desmin, a marker of hepatic stellate cells whose activation leads to the deposition of collagen fibers, accompanied by cell death and compensatory proliferation revealed by increased CASP3-mediated apoptosis, and KI67- and PCNA-proliferation markers, respectively. It also induces histopathological traits of malignancy and the level of the HCC marker, GSTP1. In conclusion, we provide a useful model for exploring the chronological ALD-associated alterations and stages, and addressing therapeutic approaches.

2.
Food Funct ; 15(8): 4586-4602, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38590223

RESUMEN

Hepatocellular carcinoma (HCC) is a tumor with minimal chance of cure due to underlying liver diseases, late diagnosis, and inefficient treatments. Thus, HCC treatment warrants the development of additional strategies. Lactoferrin (Lf) is a mammalian multifunctional iron-binding glycoprotein of the innate immune response and can be found as either a native low iron form (native-Lf) or a high iron form (holo-Lf). Bovine Lf (bLf), which shares many functions with human Lf (hLf), is safe for humans and has several anticancer activities, including chemotherapy boost in cancer. We found endogenous hLf is downregulated in HCC tumors compared with normal liver, and decreased hLf levels in HCC tumors are associated with shorter survival of HCC patients. However, the chemoprotective effect of 100% iron saturated holo-bLf on experimental hepatocarcinogenesis has not yet been determined. We aimed to evaluate the chemopreventive effects of holo-bLf in different HCC models. Remarkably, a single dose (200 mg kg-1) of holo-bLf was effective in preventing early carcinogenic events in a diethylnitrosamine induced HCC in vivo model, such as necrosis, ROS production, and the surge of facultative liver stem cells, and eventually, holo-bLf reduced the number of preneoplastic lesions. For an established HCC model, holo-bLf treatment significantly reduced HepG2 tumor burden in xenotransplanted mice. Finally, holo-bLf in combination with sorafenib, the advanced HCC first-line treatment, synergistically decreased HepG2 viability by arresting cells in the G0/G1 phase of the cell cycle. Our findings provide the first evidence suggesting that holo-bLf has the potential to prevent HCC or to be used in combination with treatments for established HCC.


Asunto(s)
Carcinoma Hepatocelular , Hierro , Lactoferrina , Neoplasias Hepáticas , Lactoferrina/farmacología , Lactoferrina/administración & dosificación , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/prevención & control , Neoplasias Hepáticas/tratamiento farmacológico , Bovinos , Hierro/metabolismo , Humanos , Ratones , Masculino
3.
Pathogens ; 13(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38251351

RESUMEN

Naegleria fowleri is a ubiquitous free-living amoeba that causes primary amoebic meningoencephalitis. As a part of the innate immune response at the mucosal level, the proteins lactoferrin (Lf) and lysozyme (Lz) are secreted and eliminate various microorganisms. We demonstrate that N. fowleri survives the individual and combined effects of bovine milk Lf (bLf) and chicken egg Lz (cLz). Moreover, amoebic proliferation was not altered, even at 24 h of co-incubation with each protein. Trophozoites' ultrastructure was evaluated using transmission electron microscopy, and these proteins did not significantly alter their organelles and cytoplasmic membranes. Protease analysis using gelatin-zymograms showed that secreted proteases of N. fowleri were differentially modulated by bLf and cLz at 3, 6, 12, and 24 h. The bLf and cLz combination resulted in the inhibition of N. fowleri-secreted proteases. Additionally, the use of protease inhibitors on bLf-zymograms demonstrated that secreted cysteine proteases participate in the degradation of bLf. Nevertheless, the co-incubation of trophozoites with bLf and/or cLz reduced the cytopathic effect on the MDCK cell line. Our study suggests that bLf and cLz, alone or together, inhibited secreted proteases and reduced the cytopathic effect produced by N. fowleri; however, they do not affect the viability and proliferation of the trophozoites.

4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279292

RESUMEN

Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.


Asunto(s)
Mannheimia haemolytica , Pasteurelosis Neumónica , Enfermedades de las Ovejas , Bovinos , Ovinos , Animales , Pasteurelosis Neumónica/diagnóstico , Pasteurelosis Neumónica/microbiología , Metaloproteasas/metabolismo , Péptido Hidrolasas/metabolismo , Rumiantes , Colagenasas/metabolismo , Zinc/metabolismo , Enfermedades de las Ovejas/microbiología
5.
Front Cell Infect Microbiol ; 13: 1150054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360530

RESUMEN

The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.


Asunto(s)
Parásitos , Animales , Humanos , Parásitos/metabolismo , Hemoglobinas/metabolismo , Hemo/metabolismo , Endopeptidasas , Péptido Hidrolasas , Hierro/metabolismo , Mamíferos/metabolismo
6.
Microorganisms ; 11(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985284

RESUMEN

Acanthamoeba castellanii genotype T4 is a clinically significant free-living amoeba that causes granulomatous amoebic encephalitis and amoebic keratitis in human beings. During the initial stages of infection, trophozoites interact with various host immune responses, such as lactoferrin (Lf), in the corneal epithelium, nasal mucosa, and blood. Lf plays an important role in the elimination of pathogenic microorganisms, and evasion of the innate immune response is crucial in the colonization process. In this study, we describe the resistance of A. castellanii to the microbicidal effect of bovine apo-lactoferrin (apo-bLf) at different concentrations (25, 50, 100, and 500 µM). Acanthamoeba castellanii trophozoites incubated with apo-bLf at 500 µM for 12 h maintained 98% viability. Interestingly, despite this lack of effect on viability, our results showed that the apo-bLf inhibited the cytopathic effect of A. castellanii in MDCK cells culture, and analysis of amoebic proteases by zymography showed significant inhibition of cysteine and serine proteases by interaction with the apo-bLf. From these results, we conclude that bovine apo-Lf influences the activity of A. castellanii secretion proteases, which in turn decreases amoebic cytopathic activity.

7.
Mol Biol Rep ; 50(1): 193-201, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36319786

RESUMEN

PURPOSE: Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two symmetrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied. METHODS AND RESULTS: Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhesions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells. CONCLUSION: Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Lactoferrina , Humanos , Femenino , Lactoferrina/farmacología , Lactoferrina/metabolismo , Neoplasias de la Mama/metabolismo , Células MCF-7 , Células MDA-MB-231
8.
Curr Pharm Des ; 28(40): 3243-3260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284379

RESUMEN

The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Animales , Humanos , Lactoferrina/farmacología , Lactoferrina/uso terapéutico , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Bacterias , Péptidos/metabolismo , Mamíferos/metabolismo
9.
Pharmaceutics ; 14(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015327

RESUMEN

Parasites and other eventually pathogenic organisms require the ability to adapt to different environmental conditions inside the host to assure survival. Some host proteins have evolved as defense constituents, such as lactoferrin (Lf), which is part of the innate immune system. Lf in its iron-free form (apo-Lf) and its peptides obtained by cleavage with pepsin are microbicides. Parasites confront Lf in mucosae and blood. In this work, the activity of Lf against pathogenic and opportunistic parasites such as Cryptosporidium spp., Eimeria spp., Entamoeba histolytica, Giardia duodenalis, Leishmania spp., Trypanosoma spp., Plasmodium spp., Babesia spp., Toxoplasma gondii, Trichomonas spp., and the free-living but opportunistic pathogens Naegleria fowleri and Acanthamoeba castellani were reviewed. The major effects of Lf could be the inhibition produced by sequestering the iron needed for their survival and the production of oxygen-free radicals to more complicated mechanisms, such as the activation of macrophages to phagocytes with the posterior death of those parasites. Due to the great interest in Lf in the fight against pathogens, it is necessary to understand the exact mechanisms used by this protein to affect their virulence factors and to kill them.

10.
Front Pharmacol ; 13: 855852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264972

RESUMEN

Homeostasis in the human body results from the tight regulation of several events, since too little inflammation disrupts the process of tissue repair and remodeling, whereas too much exerts a collateral effect by causing tissue damage with life-threatening consequences. In some clinical conditions, such as inflammatory bowel disease (IBD), inflammation functions as a double-edged sword by either enabling or inhibiting cancer development and progression. Generally, cancer develops through evasion mechanisms that regulate cell growth, causing a high rate of uncontrolled proliferation, and mechanisms for evading cell death, such as apoptosis. Moreover, chronic inflammation is a factor that contributes to colorectal cancer (CRC), as observed in individuals with IBD; all these conditions favor an increased rate of angiogenesis and eventual metastasis. Lactoferrin (Lf) is a mammalian iron-binding multifunctional glycoprotein regarded as a natural compound that up- and downregulates both humoral and cellular components of immunity involved in regulating the inflammatory response and maintaining gut homeostasis. Human and bovine Lf share high sequence homology and have very similar antimicrobial, anti-inflammatory, and immunomodulatory activities. Bovine Lf from milk is considered a safe molecule and is commercially available in large quantities. This review mainly focuses on the regulatory effects of orally administered bovine Lf on the inflammatory response associated with CRC; this approach indicates that CRC is one of the most frequently diagnosed cancers and affects the intestinal tract with high clinical and epidemiologic relevance. Thus, this review may provide foundations for the potential use of bovine Lf alone or as a natural adjunct agent to increase the effectiveness and reduce the side effects of anticancer chemotherapy.

11.
Access Microbiol ; 3(10): 000269, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34816089

RESUMEN

Mannheimia haemolytica serotype A2 is the main bacterial causative agent of ovine mannheimiosis, a disease that leads to substantial economic losses for livestock farmers. Several virulence factors allow M. haemolytica to colonize the lungs and establish infection. Virulence factors can be directly secreted into the environment by bacteria but are also released through outer membrane vesicles (OMVs). In addition, due to the abuse of antibiotics in the treatment of this disease, multidrug-resistant bacterial strains of M. haemolytica have emerged. One therapeutic alternative to antibiotics or an adjuvant to be used in combination with antibiotics could be lactoferrin (Lf), a multifunctional cationic glycoprotein of the mammalian innate immune system to which no bacterial resistance has been reported. The aim of this work was to determine the effect of bovine iron-free Lf (apo-BLf) on the production and secretion of proteases into culture supernatant (CS) and on their release in OMVs. Zymography assays showed that addition of sub-MIC concentrations of apo-BLf to M. haemolytica cultures inhibited protease secretion without affecting culture growth. Biochemical characterization revealed that these proteases were mainly cysteine- and metalloproteases. The secretion of a 100 kDa metalloprotease was inhibited by sub-MIC concentrations of apo-BLf since this protease was present in the cytoplasm and OMVs but not in CS proteins, as corroborated by Western blotting. On the other hand, proteases produced by M. haemolytica caused cleavage of apo-BLf. However, when Lf is cleaved, peptides known as lactoferricins, which are more bactericidal than natural Lf, can be produced. M. haemolytica A2 protease-mediated degradation of host tissue proteins could be an important virulence factor during the infectious process of pneumonia in ovines. The mechanism of M. haemolytica protease secretion could be inhibited by treatment with apo-BLf in animals.

12.
Molecules ; 25(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302377

RESUMEN

Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Lactoferrina/química , Lactoferrina/farmacología , Péptidos/química , Péptidos/farmacología , Animales , Antiinfecciosos/síntesis química , Antiparasitarios/síntesis química , Antiparasitarios/química , Antiparasitarios/farmacología , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Pared Celular/efectos de los fármacos , Técnicas de Química Sintética , Hongos/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Péptidos/síntesis química , Proteolisis/efectos de los fármacos , Relación Estructura-Actividad , Virulencia/efectos de los fármacos , Factores de Virulencia , Virus/efectos de los fármacos
13.
Front Vet Sci ; 7: 569370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195549

RESUMEN

Actinobacillus pleuropneumonia is a swine (host) specific respiratory pathogen and the etiological agent of swine pleuropneumonia which affects pigs of all ages, many being asymptomatic carriers. This pathogen has high morbidity and mortality rates which generates large economic losses for the pig industry. Actinobacillus pleuropneumoniae is a widely studied bacterium, however its pathogenesis is not yet fully understood. The prevalence of the 18 serotypes of A. pleuropneumoniae varies by geographic region, in North American area, more specifically in Mexico, serotypes 1, 3, 5b, and 7 show higher prevalence. Actinobacillus pleuropneumoniae is described as a strict extracellular pathogen with tropism for lower respiratory tract. However, this study depicts the ability of these serotypes to adhere to non-phagocytic cells, using an endothelial cell model, as well as their ability to internalize them, proposing it could be considered as an intracellular pathogen.

14.
Int J Parasitol ; 50(12): 959-967, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32822678

RESUMEN

Amoebiasis is a parasitic infection of the human large intestine caused by Entamoeba histolytica; this disease mainly affects people from developing countries. To survive, this primitive protozoan has a high demand for iron, and it uses host iron proteins upon invasion. Transferrin (Tf) is a plasma iron-binding protein that transports and delivers iron to all cells. Iron-loaded Tf (holoTf) in humans can support the proliferation of amoebae in vitro by binding to an amoebic TfR (EhTfR), and amoebae endocytose it inside clathrin-coated vesicles. In this study, it was found that EhTfR phosphorylation is required for human holoTf endocytosis by E. histolytica. Once this complex is endocytosed, human holoTf could be degraded with a nutritional purpose by cysteine proteases. HoloTf endocytosis initiates the activation of the mitogen-activated protein kinases (MAPKs) and focal adhesion kinase (FAK) pathways, which induce cell proliferation with phosphoinositide 3-kinase (PI-3 K) and Ca2+ involvement. In the first minutes after holoTf is endocytosed, several proteins are phosphorylated including transketolase, enolase, L-myo-inositol-1-phosphate synthase and phosphoglucomutase, which control carbohydrate metabolism, and heat shock protein-70. The study of these proteins and their signal transduction pathways could be useful for developing future therapies.


Asunto(s)
Endocitosis , Entamoeba histolytica , Transducción de Señal , Transferrina/química , Calcio , Quinasa 1 de Adhesión Focal , Humanos , Proteínas Quinasas Activadas por Mitógenos , Fosfatidilinositol 3-Quinasas
15.
Vet Res ; 51(1): 36, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32138772

RESUMEN

Mannheimia haemolytica serotype A2 is the principal cause of pneumonic mannheimiosis in ovine and caprine livestock; this disease is a consequence of immune suppression caused by stress and associated viruses and is responsible for significant economic losses in farm production worldwide. Gram-negative bacteria such as M. haemolytica produce outer membrane (OM)-derived spherical structures named outer membrane vesicles (OMVs) that contain leukotoxin and other biologically active virulence factors. In the present study, the relationship between M. haemolytica A2 and bovine lactoferrin (BLf) was studied. BLf is an 80 kDa glycoprotein that possesses bacteriostatic and bactericidal properties and is part of the mammalian innate immune system. Apo-BLf (iron-free) showed a bactericidal effect against M. haemolytica A2, with an observed minimal inhibitory concentration (MIC) of 16 µM. Sublethal doses (2-8 µM) of apo-BLf increased the release of OMVs, which were quantified by flow cytometry. Apo-BLf modified the normal structure of the OM and OMVs, as observed through transmission electron microscopy. Apo-BLf also induced lipopolysaccharide (LPS) release from bacteria, disrupting OM permeability and functionality, as measured by silver staining and SDS and polymyxin B cell permeability assays. Western blot results showed that apo-BLf increased the secretion of leukotoxin in M. haemolytica A2 culture supernatants, possibly through its iron-chelating activity. In contrast, holo-BLf (with iron) did not have this effect, possibly due to differences in the tertiary structure between these proteins. In summary, apo-BLf affected the levels of several M. haemolytica virulence factors and could be evaluated for use in animals as an adjuvant in the treatment of ovine mannheimiosis.


Asunto(s)
Antibacterianos/farmacología , Exotoxinas , Lactoferrina/farmacología , Mannheimia haemolytica/efectos de los fármacos , Pasteurelosis Neumónica/tratamiento farmacológico , Enfermedades de las Ovejas/tratamiento farmacológico , Animales , Mannheimia haemolytica/fisiología , Ovinos
16.
Int J Med Microbiol ; 310(1): 151358, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31587966

RESUMEN

Amoebiasis is a parasitic disease caused by Entamoeba histolytica (E. histolytica), an extracellular enteric protozoan. This infection mainly affects people from developing countries with limited hygiene conditions, where it is endemic. Infective cysts are transmitted by the fecal-oral route, excysting in the terminal ileum and producing invasive trophozoites (amoebae). E. histolytica mainly lives in the large intestine without causing symptoms; however, possibly as a result of so far unknown signals, the amoebae invade the mucosa and epithelium causing intestinal amoebiasis. E. histolytica possesses different mechanisms of pathogenicity for the adherence to the intestinal epithelium and for degrading extracellular matrix proteins, producing tissue lesions that progress to abscesses and a host acute inflammatory response. Much information has been obtained regarding the virulence factors, metabolism, mechanisms of pathogenicity, and the host immune response against this parasite; in addition, alternative treatments to metronidazole are continually emerging. An accesible and low-cost diagnostic method that can distinguish E. histolytica from the most nonpathogenic amoebae and an effective vaccine are necessary for protecting against amoebiasis. However, research about the disease and its prevention has been a challenge due to the relationship between E. histolytica and the host during the distinct stages of the disease is multifaceted. In this review, we analyze the interaction between the parasite, the human host, and the colon microbiota or pathogenic microorganisms, which together give rise to intestinal amoebiasis.


Asunto(s)
Amebiasis/parasitología , Países en Desarrollo , Disentería Amebiana/parasitología , Intestinos/parasitología , Salud Pública , Amebiasis/tratamiento farmacológico , Amebiasis/epidemiología , Animales , Antiprotozoarios/uso terapéutico , Disentería Amebiana/epidemiología , Entamoeba histolytica/inmunología , Entamoeba histolytica/patogenicidad , Heces/parasitología , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Metronidazol/uso terapéutico , Ratones , Virulencia
17.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547574

RESUMEN

Lactoferrin (Lf) is an iron-binding milk glycoprotein that promotes the growth of selected probiotic strains. The effect of Lf on the growth and diversification of intestinal microbiota may have an impact on several issues, including (i) strengthening the permeability of the epithelial cell monolayer, (ii) favoring the microbial antagonism that discourages the colonization and proliferation of enteric pathogens, (iii) enhancing the growth and maturation of cell-monolayer components and gut nerve fibers, and (iv) providing signals to balance the anti- and pro-inflammatory responses resulting in gut homeostasis. Given the beneficial role of probiotics, this contribution aims to review the current properties of bovine and human Lf and their derivatives in in vitro probiotic growth and Lf interplay with microbiota described in the piglet model. By using Lf as a component in pharmacological products, we may enable novel strategies that promote probiotic growth while conferring antimicrobial activity against multidrug-resistant microorganisms that cause life-threatening diseases, especially in neonates.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal , Lactoferrina/metabolismo , Probióticos/metabolismo , Animales , Bovinos , Humanos
19.
Biosci Rep ; 39(1)2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30429239

RESUMEN

Amoebiasis caused by the protozoan parasite Entamoeba histolytica remains a public health problem in developing countries, making the identification of new anti-amoebic compounds a continuing priority. Previously, we have shown that lactoferrin (Lf) and several Lf-derived peptides exhibit in vitro anti-amoebic activity independently of their iron-binding activity. Here, we evaluated the amoebicidal effect of synthetic Lf-derived peptides Lfcin-B, Lfcin 17-30, and Lfampin, analyzed the mechanism of death induced by the peptides and determined their therapeutic effects on murine intestinal amoebiasis. MTT assays in trophozoite cultures of E. histolytica exposed to each peptide (1-1000 µM) showed that Lfampin is far more amoebicidal than Lfcins. Lfampin killed 80% of trophozoites at doses higher than 100 µM in 24 h, and FACs analysis using Annexin V/propidium iodide showed that death occurred mainly by necrosis. In contrast, Lfcin-B and Lfcin 17-30 appeared to have no significant effect on amoebic viability. FACs and confocal microscopy analysis using FITC-labeled peptides showed that all three peptides are internalized by the amoeba mainly using receptor (PI3K signaling) and actin-dependent pathways but independent of clathrin. Docking studies identified cholesterol in the amoeba's plasma membrane as a possible target of Lfampin. Oral treatment of intracecally infected mice with the abovementioned peptides at 10 mg/kg for 4 days showed that Lfampin resolved 100% of the cases of intestinal amoebiasis, whereas Lfcin 17-30 and Lfcin-B were effective in resolving infection in 80 and 70% of cases, respectively. These data show that although synthetic bovine Lf-derived peptides exhibit varying amoebicidal potentials in vitro, they do resolve murine intestinal amoebiasis efficiently, suggesting that they may be useful as a therapeutic treatment.


Asunto(s)
Antiprotozoarios/farmacología , Entamoeba histolytica/efectos de los fármacos , Entamebiasis/tratamiento farmacológico , Lactoferrina/farmacología , Necrosis/tratamiento farmacológico , Péptidos/farmacología , Trofozoítos/efectos de los fármacos , Animales , Bovinos , Entamebiasis/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Fosfatidilinositol 3-Quinasas/metabolismo
20.
Future Microbiol ; 13: 1329-1341, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30238768

RESUMEN

Entamoeba histolytica is a human parasite that causes amoebiasis, a disease that affects the colon and liver and is prevalent worldwide. This protozoan requires a high concentration of iron to survive and reproduce. Iron modulates the expression of parasite virulence factors, including hemoglobinases, hemoglobin-binding proteins and cysteine proteases, as well as proteins related to the amoebic cytoskeleton. This review summarizes the virulence factors that are affected by iron, resulting in upregulation or downregulation of E. histolytica genes. This review also discusses the functionality of iron in the mechanisms of pathogenesis.


Asunto(s)
Amebiasis/parasitología , Entamoeba histolytica/patogenicidad , Hierro/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Entamoeba histolytica/genética , Hemoglobinas/metabolismo , Interacciones Huésped-Parásitos , Humanos , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Ratones , Estructura Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...